Sabtu, 26 Maret 2016

Sistem Koordinat Kartesius

Pengertian, Rumus, dan Sistem Koordinat Kartesius  - Materi mengenai sistem koordinat kartesius ini saya rangkum dari berbagai sumber kemudian saya tuliskan kembali dengan bahasa yang lebih mudah agar kalian bisa memahaminya dengan baik. Pada pelajaran matematika SD, sistem koordinat kartesius diajarkan pada kelas 6. siswa dituntut agar dapat menggunakan sistem koordinat kartesius, serta mengetahui cara menentukan titik pada bidang koordinat kartesius. Oleh karenanya, di dalam postingan kali ini rumus matematika akan mengulas secara lengkap mengenai pengertian, rumus, dan sistem koordinat kartesius.

Pengertian Sistem Koordinat Kartesius


Di dalam ilmu matematika, sistem koordinat kartesius dipergunakan untuk menentukan posisi ataupun letak dari sebuah titip pada suatu bidang datar. posisi titik tersebut ditentukan oleh dua buah garis yanng ditarik secara vertikal dan horizontal dimana titik pusatnya berada pada titik 0 (titik asal). Garis horizontal disebut sebagai sumbu X dimana X positif digambarkan mendatar ke kanan sedangkan X negatif digambar mendatar ke kiri. Sementara itu garis Vertikal disebut sebagai sumbu Y dimana Y positif digambarkan kearah atas dan Y negatif digambarkan ke arah bawah. Perhatikan gambar di bawah ini:

 




Cara Menentukan Titik Pada Sistem Koordinat Kartesius


Perhatikan gambar berikut ini:


















Gambar diatas merupakan sebuah bidang koordinat yang dibentuk oleh dua buah garis yaitu garis X(Sumbu X) yang mendatar serta garis Y (Sumbu Y) yang Tegak. Kedua garis tersebut berpotongan pada satu titik yang disebut sebagai pusat koordinat (titik 0).

Bidang koordinat di atas disebut sebagai bidang koordinat kartesius yang digunakan untuk menentukan posisi dari sebuah titik yang dinyatakan dalam pasangan angka/bilangan. Coba kalian perhatikan tiitk A,B,C, dan D yang ada di dalam bidang tersebut. Untuk menentukan letak dari titik-titik tersebut kalian harus memulainya dari pusat koordinat (titik 0). Lalu perhatikan angka yang ada pada sumbu X barulah setelah itu perhatikan angka yang ada pada sumbu Y. Mengapa demikian? Karena untuk menuliskan letak titik pada bidang koordinat kartesius, kita menggunakan pasangan bilangan (X,Y).

Sebagai contoh, dari gambar di atas kita bisa menentukan pasangan bilangan untuk titik A, B, C, dan D sebagai berikut:

Letak Koordinat titik A = A(1,0)
Letak Koordinat titik B = B(2,4)
Letak Koordinat titik C = C(5,7)
Letak Koordinat titik D = D(6,4)


Agar lebih paham, coba perhatikan soal berikut:

Contoh Soal
Tentukan posisi titik koordinat pada bidang kartesius bila diketahui koordinat titik E (2,2), F (-2,1), dan G(-3,-3).

Jawab:


Description: Pengertian, Rumus, dan Sistem Koordinat Kartesius SD kelas 6



Kurang lebih begitulah cara untuk menentukan letak atau posisi titik pada sistem koordinat kartesius. Sekian materi mengenai Pengertian, Rumus, dan Sistem Koordinat Kartesius yang bisa saya uraikan. Semoga kalian bisa memahaminya dengan baik.
Sistem koordinat Kartesius


 Gambar 1 - Sistem koordinat Kartesius. Terdapat empat titik yang ditandai: (2,3) titik hijau, (-3,1) titik merah, (-1.5,-2.5) titik biru, dan (0,0), titik asal, yang berwarna ungu.
Dalam matematikaSistem koordinat Kartesius digunakan untuk menentukan tiap titik dalam bidangdenganmenggunakandua bilangan yangbiasa disebut koordinat x (absis) dan koordinat y (ordinat) dari titik tersebut.
Untuk mendefinisikan koordinat diperlukan dua garis berarah yang tegak lurus satu sama lain (sumbu x dan sumbu y), dan panjang unit, yang dibuat tanda-tanda pada kedua sumbu tersebut (lihat Gambar 1).
Sistem koordinat Kartesius dapat pula digunakan pada dimensi-dimensi yang lebih tinggi, seperti 3 dimensi, dengan menggunakan tiga sumbu (sumbu x, y, dan z).











Gambar 2 - Sistem koordinat Kartesius disertai lingkaran merah yang berjari-jari 2 yang berpusat pada titik asal (0,0). Persamaan lingkaran merah ini adalah x² + y² = 4.
Dengan menggunakan sistem koordinat Kartesius, bentuk-bentuk geometri seperti kurva dapat diekspresikan dengan persamaan aljabar. Sebagai contoh, lingkaran yang berjari-jari 2 dapat diekspresikan dengan persamaan x² + y² = 4 (lihat Gambar 2).
Istilah Kartesius digunakan untuk mengenang ahli matematika sekaligus filsuf dari PerancisDescartes, yang perannya besar dalam menggabungkan aljabar dan geometri (Cartesius adalahlatinisasi untuk Descartes). Hasil kerjanya sangat berpengaruh dalam perkembangan geometri analitikkalkulus, dan kartografi.
Ide dasar sistem ini dikembangkan pada tahun 1637 dalam dua tulisan karya Descartes. Pada bagian kedua dari tulisannya Discourse on the Method, ia memperkenalkan ide baru untuk menggambarkan posisi titik atau objek pada sebuah permukaan, dengan menggunakan dua sumbu yang bertegak lurus antar satu dengan yang lain. Dalam tulisannya yang lain, La Géométrie, ia memperdalam konsep-konsep yang telah dikembangkannya.
Lihat koordinat untuk sistem-sistem koordinat lain seperti sistem koordinat polar.
Sistem koordinat dua dimensi
Sistem koordinat Kartesius dalam dua dimensi umumnya didefinisikan dengan dua sumbu yang saling bertegak lurus antar satu dengan yang lain, yang keduanya terletak pada satu bidang (bidang xy). Sumbu horizontal diberi label x, dan sumbu vertikal diberi label y. Pada sistem koordinat tiga dimensi, ditambahkan sumbu yang lain yang sering diberi label z. Sumbu-sumbu tersebut ortogonal antar satu dengan yang lain. (Satu sumbu dengan sumbu lain bertegak lurus.)
Titik pertemuan antara kedua sumbu, titik asal, umumnya diberi label 0. Setiap sumbu juga mempunyai besaran panjang unit, dan setiap panjang tersebut diberi tanda dan ini membentuk semacam grid. Untuk mendeskripsikan suatu titik tertentu dalam sistem koordinat dua dimensi, nilai xditulis (absis), lalu diikuti dengan nilai y (ordinat). Dengan demikian, format yang dipakai selalu (x,y) dan urutannya tidak dibalik-balik.

Gambar 3 - Keempat kuadran sistem koordinat Kartesius. Panah yang ada pada sumbu berarti panjang sumbunya tak terhingga pada arah panah tersebut.
Pilihan huruf-huruf didasari oleh konvensi, yaitu huruf-huruf yang dekat akhir (seperti x dan y) digunakan untuk menandakan variabel dengan nilai yang tak diketahui, sedangkan huruf-huruf yang lebih dekat awal digunakan untuk menandakan nilai yang diketahui.
Sebagai contoh, pada Gambar 3, titik P berada pada koordinat (3,5).
Karena kedua sumbu bertegak lurus satu sama lain, bidang xy terbagi menjadi empat bagian yang disebut kuadran, yang pada Gambar 3 ditandai dengan angka I, II, III, dan IV. Menurut konvensi yang berlaku, keempat kuadran diurutkan mulai dari yang kanan atas (kuadran I), melingkar melawan arah jarum jam (lihat Gambar 3). Pada kuadran I, kedua koordinat (x dan y) bernilai positif. Pada kuadran II, koordinat x bernilai negatif dan koordinat y bernilai positif. Pada kuadran III, kedua koordinat bernilai negatif, dan pada kuadran IV, koordinat x bernilai positif dan y negatif (lihat tabel dibawah ini).

Kuadran
nilai x
nilai y
I
> 0
> 0
II
< 0
> 0
III
< 0
< 0
IV
> 0
< 0


Tidak ada komentar:

Posting Komentar